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Abstract- The finite element method is used for the solution of two-dimenslonal heat- and mass-transfer 
problems in porous media. The formulation is given in general terms and is not restricted to any particular 
type of element. 

It is demonstrated in the paper that the versatility ofthe technique results in a viable method of solution 
for new practical applications of the Luikov system of equations. 

A. generalized convective coefficients 

[see equation ( I3)]: 

cm+ moisture CapaciQ [k&,,okslure/k~,y hod? *Ml; 

Cq* heat capacity [J/kg. K]: 

c, generalized capacities [see equation (12)]; 

C, capacity matrix: 

./In. specific mass flux [kgmvl,rl,rdmZ s]: 

.k’ specific heat flux [W/m2]; 

J. generalized fluxes [see equation (13)]; 

km, moisture conductivity [kg,,,,t,,,,/m. s * OM]: 

k,, thermal conductivity [W/m. K]: 
K. generalized conductivity [see equation (12)]: 

K, conductivity matrix; 

1. reference length [m] ; 
N, shape function: 

r. radial co-ordinate [m] ; 
t, temperature [-Cl ; 
T, = t/to. dimensionless temperature; 

T. vector of nodal temperature values : 
u. mass transfer potential [“Ml; 

u, = u,&, dimensionless mass-transfer 

potential: 

U, vector of nodal values of mass-transfer 
potential ; 

X, r. Cartesian co-ordinates [ml: 
x. y. dimensionless co-ordinates 

(X = .y;i; Y = .I$). 

NOMENCLATURE 

Greek letters 

a,. convective mass-transfer coefficient 

Ckgmolrture/m2 s. ‘Ml; 
2,. convective heat-transfer coefficient 

[W/m” K]: 
1) 

F. 
direction cosines of the outward normal n; 
boundary surface [m2]; 

6. thermo-gradient coefficient [‘M K-l]: 

E. ratio of the vapour diffusion coefficient to the 
coefficient of the total diffusion of moisture; 

9% = [T, U] ‘, vector of potential values at the 
nodes; 
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3. time [s]; 

8, = 3 ‘So. dimensionless time; 

2, 
heat of phase change [J/kg]: 

domain of definition [m”]; 

P? dry body density [kg/m3]. 

Subscripts and superscripts 

CI. ambient; 

e. element: 

1. initial: 
It& mass; 

n, time level ; 

Y. heat; 

.X. ?‘. in direction of X, r: 
H’, surface : 
s, thermo-diffusion: 
c, heat sink due to internal evaporation; 

0. reference; 
* equivalent. 

INTRODUCTION 

THE INTERRELATION between heat and mass transfer 
in porous bodies was first established by Luikov 

[l, 2, lo] who proposed a two term relationship for non- 
isothermal mass diffusion and also determined exper- 
imentally the coefficients of diffusion and thermo- 

diffusion for a number of moist materials. Later [3], 
via the use of thermodynamics of irreversible processes, 

he defined a coupled system of partial differential 
equations for heat- and mass-transfer potential distri- 
butions in porous bodies. Applications in this and other 

fields such as drying theory. building thermo-physics 
and heat and moisture migration in soils can be found 
in [4.5]. Independently. Krischer [6] and De Vries [7] 

also proposed systems of differential equations of the 
Luikov type for temperature and moisture content dis- 
tributions in porous bodies. 

The analytical solution of these types of equations 
presents great mathematical difficulties, and con- 
sequently solutions are given for only the simplest of 
geometrical configurations and boundary conditions 
[8]. In any realistic problem resort must be made to 
numerical techniques. These have usually been based 
on the finite difference method as proposed in the 
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literature [9]. An alternative technique, based on the 
finite element method, showed that finite element and 

analytical solutions correlated to within l”,, for the 
case of one-dimensional problems involving boundary 
conditions of different kinds [lo]. 

In this paper the finite element method is extended 
to situations of greater complexity and engineering 
significance. Results are presented for two typical dry- 

ing processes and for a problem of heat and moisture 
transfer through a basement foundation. 

Transfer equations 
If the total pressure is assumed constant throughout 

the moist body and a zonal system of calculation is 

used [8], the heat and mass exchange in porous 
materials can be described in every zone 0’ of the 

entire domain of definition Q. by the following equa- 
tions : 

PC”,; = !i,6V2t+k,V21c 

(1) 

where t and u are the heat- and mass-transfer potentials 

and the coefficients p, cq. c,, k,, k,. E. A, 6 are taken as 

constant and equal to their respective mean values in 
each zone. 

A general set of boundary conditions for the system 
of equations (1) is given by 

t = t, (2) 

on rl. i.e. the portion of the boundary with a constant 
temperature and 

k,Vtn+j,+a,(t-t,)+(l-~)lcr,(u-u,)= 0 (3) 

on I-,. being that part of the boundary subjected to 
heat flux conditions. 

Also, for the mass transfer we have 

l4 = liw (4) 

on I-,, i.e. the portion of the boundary with a constant 
moisture potential and 

k,Vun+j,+k,GVtn+a,(tr--u,) = 0 (5) 

on r,, which is that portion of the boundary subjected 

to a moisture flux. The variables t,, uw, t,. u,, j,, j,, 
xq. a, are all known functions of position and/or time. 

The problem defined by equations (l)-(5) can be 
rewritten in a generalised two dimensional form; 

with boundary conditions : 

T = T, on r1 

+J,* =0 on r, (8) 

u = u, on r, (9) 

and 

i 
+J,* =0 on F,. (10) 

In the above, dimensionless variables: T = t/r”, u = 

U/MO, 0 = 9180, X = .x/l, Y = J’/! are utilised. with 
to( = r,), uo( = u,), O. and 1 taken as reference values. 

Generalized capacities C’s, generalized transfer coef- 
ficients K’s and generalized “equivalent” fluxes J*‘s are 

also referred to. Boundary conditions (8). (10) are 
formulated in such a manner as to retain the symmetry 
of the problem. Also, with a suitable definition of the 

generalized coefficients, K, can always be made equal 
to r<, thus making the system of equations (6) sym- 

metric. If, in particular, the following condition is 
imposed 

K, = & = d.k,,ci/kq 

from equations (l)-(5) it follows that: 

(11) 

and 

J~*=A~(T-T,)+A,(I/-I/,)+J~: 

JZ = MT--T,)+ A,(U- u,)+ J,,,; 

A,, = -i”f)($). 
FINITE ELEMENT FORMULATION 

The variable potentials T and U are approximated 

throughout the solution domain Q by the relationships: 

T 2 T- = i N,(X, Y)T,(O) = NT 
r=l 

(14) 

U 2 0 = t N,(X, Y)U,(fl) = NU 
r=, 

where T, and U, are the nodal values and iV,. are the 
usual shape functions which represent the potential 
distributions and are defined piecewise element by 
element [ 111. 

If the approximations given by equation (14) are 
substituted into the governing differential equations (6) 
a residual is obtained which is then minimized using 
Galerkin’s approach. This requires that the weighted 
errors over the domain must be zero, with the shape 
functions N, being utilized as the weighting functions 

L-121 

+K.($+$)-C,g]dQ=O (15) 
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Applying Green’s theorem to the above expressions 
and rearranging. results in the following system of 
differential equations [lo, 121 

K++Cd+J = 0 (17) 

where K, C are 2M x 2M symmetric matrices: 

The dot indicates differentiation with resnect to time, 
and the vectors Cp, J are defined by: 

d, = [T, U]‘: [Jrl, J,]‘. 

Typical matrix elements are [ 10,121 

and 

(19) 

(20) 

(21) 

(22) 

(23) 

The preceding summations are taken over the 
contributions of each element and the boundary con- 
ditions are applied only on the appropriate surfaces. 

The system of equations (17) is linear in K and C but 
non-linear in J as the fluxes are functions of the 
external node potentials. Values at three consecutive 
time steps are then used to march in time, which results 
in the following recurrence scheme: 

d, “+* = - [K’,‘3+Cfl,‘(2AB)]-* 

x [K”9”/3+K”cP”-‘,‘3 - C”#‘-‘/(2A0) + J”] (24) 

where the superscript n refers to the time level and A6 
is the time step. 

It can be seen that central values of the matrices 
K, C and J are used in equation (24) which circumvents 
the necessity for iterating on the non-linear vector J. 
The scheme requires two starting values of d, for 
initiation, but this presents no difficulty as known 
stationary values can be easily assumed. 

At this point, however, it must be noted that the un- 
conditionally stable. three Ievel scheme first proposed 
by Lees [14], is utilised in a slightly modified form. 
The equivalent fluxes J are not averaged over the three 
time levels. and in certain circumstances, this can lead 
to oscillations in the numerical solution. However, 
these instabilities can usually be eliminated by means 
of some artifice [ 151. Extensive numerical experiments 
by the authors have shown that dramatic improvements 

in stability can be achieved by redefining #“-I at every 
new time step, as: 

dp-l= ~~~~-l+~-*~f3 

and continuing with the solution as before. 

(25) 

SOME ILLUSTRATIVE EXAMPLES 

In the program. two-dimensional isoparametric 
elements describe the various regions and these are 
also capable of incorporating curvilinear sides. The 
integrations in equations (20)-(22) were carried out 
numerically as shown in [16]. Since the K and C 
matrices are time independent. a Gaussian elimination 
technique was first used to obtain a partial inverse, 
which was then utilised to back substitute the variable 
vector occurring at each stage of the calculation. 

Example 1. Drying of a brick 
Temperature and moisture transfer distributions 

were determined in a brick subjected to a drying 
process of relatively high intensity. The geometry con- 
sidered and the mesh used are represented in Fig. l(a). 
By utilising the symmetry of the problem only a quarter 
of the entire domain need be analysed. 

In the calculations the following values of physical 
properties were used: 

p = 1200 kg/m3; c, = 879 J/kg*K: 

k,=0.44W/m.K; 6=056”M~K”~‘: 

cm = 1.8 X lo- 3 kmome/kqdry hoci>‘M : 

d = 2.5 x lo6 J/kg; c = 0.3; 

k, = 6.04 x 1O-8 kg,,i,,,,,,-/m . s “M. 

Convective boundary conditions have been considered, 
with higher values of transfer coefficients at the external 
surface : 

cxp = 35W/m’.K; 

~1, = 8.44 x 1O-6 kg,a,stii,c/m2 s. “M 

lower values at the internal surface: 

c(~ = 17.5 W/m’.K; 

c(, = 4.32 x lo-” kg,,,o,s,ure/m2. s. “M 

and the same values of equilibrium potentials: 

ta = 60°C; u, = 11”M. 

Constant stationary initial conditions have been 
assumed throughout the domain: 

ti = 10°C: ui = 1ll”M. 

Potential distributions at different levels of time are 
shown in Fig. l(b) and Fig. l(c). As can be seen, large 
moisture potential gradients occur at the corners in- 
dicating a possible failure zone due to the different 
shrinkages induced. Therefore, in this particular case, 
recourse to a less intense drying process would be 
recommended. 

The order of accuracy reached with the numerical 
calculations was evaluated by considering a section 
where essentially a one-dimensional distribution of 
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(0) 

6- 1200s il- 2400s 

! tw1 I u?M) I u(W) 

lb) 

FIG. 1. Dryingofa brick. (a) Mesh used. (b) Potential distributions at 8 = 1200s. (c) Potential distributions 
at 9 = 2400 s. 

potentials exist and assuming, for comparison pur- 
poses, the same convection coefficients on both sides 
of the “slab”. Reference to the centre of section AA 
(Fig. la) and to the foflowing values of convection 
coefficients: 

yq = 35W/m”.K: tl,,, = 8.64 x 10m6 kg/m’ ‘s.‘M 

yields the results presented in Fig. 2. A not unsatis- 
factory agreement is seen to exist between the analytical 
solution given in ([S], p, 52) and the finite element 
solution obtained using the mesh of Fig. l(a). 

- Anolyttcal salmon 
l Ftncte element 

FIG. 2. Comparison of analytical and finite element solu- 
tions for the central point of slab AA in Fig. l(a). 

Example 2. Drj%g ofa cerumic electric insulator 
The complicated geometry considered in this 

example is modelled by the finite element mesh shown 
in Fig. 3(a). The axial symmetry is dealt with, as 
suggested in ([16], p. 302), by assuming x = r utilizing 
“equivalent” values of physical properties: (PC)* = rpc, 

Frc. 3. Drying of an axi-symmetric electric insulator made 
of ceramic material. (a) Mesh used. (b) Potential distri- 
butions at 9 = 3600s. (c) Potential distributions at 9 = 

18000s. 

(k)* z rk and taking into account the circular develop- 
ment of the domain in the evaluation of external 
surface areas. 

Values of physical parameters and of boundary and 
initial conditions have been assumed as follows: 

p = 2000kg/m3: cq = 607Jikg.K: 
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k, = 0.34Wlm.K; 6 = 0.56”M.K-‘; 

cm = 1.8 X IO- 3 kgmolsture/kgdry body ’ “M; 

I=2.5x106J/kg; s=0.3, 

k,=2.4~ 10-7kgmoisture/m.s.oM; r,=20W/m.“K; 

c(,,, = 5.0 X lo- 6 kgmoisrure/mZ . S. M; t. = 60°C; 

u. = 40”M; ti = 25°C; ui = 80”M. 

The analysis on drying cycles for ceramic electric 
insulators is a problem of great practical importance 

(a) 

and as can be inferred from Figs. 3(b) and 3(c), such 
an objective can be achieved by means of a finite 

element analysis. 

Example 3. Heat and moisture transfer in a foundation 
basement 

It is known that excessive mass transfer in cold stone 

walls can seriously damage their thermal insulation. 
Thus, vapour barriers are usually utilized to reduce 

such moisture migration. However, it is possible for the 
barrier to be wrongly positioned and in such circum- 
stances the moisture content in the thermal insulation 

can rise dangerously. 
A steady state finite element analysis with the mesh 

shown in Fig. 4(a) was used to demonstrate the appli- 
cability of the method in such cases. Boundary con- 
ditions of the first kind and non-conductive external 
surfaces are referred to, as indicated in the figures. The 
physical property values utilized were as follows: 

concrete: k, = 0.32 W/m. K; 

k, = 1.4 x lo-’ kgmorstore/m~s~OM 

soil (clay): k, = 1.143 W/m.K; 

k, = 1.1 x 10-7kg,,,0,sture/m.s.“M 

polystyrene: k, = 0.03 W/m. K; 

k, = 1.05 x lo-’ kg,,,Oisture/m. s. “M 

vapour barrier: k, = 1 W/m. K; 

k, = 2.8 x lo- lz kgmolsture/m. s. “M. 

(b) 

FIG. 4. Heat and moisture transfer in the foundation basement of a cold store. 
(a) Mesh used. (b) Steady state potential distributions with a complete vapour barrier. 
(c)Steady state potential distributions with thevapour barrier removed from the floor. 

HMT Vol. 19. No. 12-D 
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Any moisture transfer was assumed to occur only in 
vapour from (E = 1) and the same value of the thermo- 
gradient coefficient: S = 0.5”M.K-’ was used for ail 
materials.* 

The potential distributions with two different ar- 
rangements of the vapour barrier are given in Figs. 
4(b) and 4(c). As can be inferred from the results, the 
vapour barriers must be extended to the floors in order 
to be effective. 

CONCLUSIONS 

The approach to the solution of heat- and mass- 
transfer problems in porous bodies proposed in this 
paper has wide applications and has been shown to 
give accurate results. 

The versatility of the finite element method in dealing 
with complicated geometries and physical. property 
variations makes possible the solution of practical 
probiems in the fields of drying theory, building 
thermophysics and, in more general, heat and mass 
transfer in porous materials. 
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RESOLUTION NUMERIQUE DES PROBLEMES BIDIMENSIONNELS 
DE TRANSFERT DE CHALEUR ET DE MASSE 

R&urn&-On utilise la mkthode des 8lkments finis pour resoudre les problemes de transfert de chaleur 
et de masse dans les milieux poreux. La formulation est donnbe sous forme gknerale et n’est pas limit&e 
8 un type particulier d’&ment. L’article dCmontre que la souplesse de la technique permet une mCthode 

de r&solution du systhme d’bquations de Luikov utile dans ses applications pratiques nouvelles. 

EINE NUMERISCHE LOSUNG ZWEIDIMENSIONALER PROBLEME 
DES WARME- UND STOFFtiBERGANGS 

Z~m~nfa~~g-Zur LGsung ~weidimension~er WLrme- und Stoff~bergangsprobleme in poriisen 
Stoffen wird die Methode der fmiten Elemente angewandt. Die Formulierung wird in allgemeinen 
Ausdriicken gegeben und ist nicht auf spezielle Elementtypen beschrtinkt. In der Arbeit wird gezeigt, 
dal3 die Vielseitigkeit dieser Methode zu giinstigen LGsungsverfahren fiir neue, praktische AnwendungsfZlle 

des Luikov-Gleichungssystems fiihrt. 

YMCJIEHHOE PEIIIEHME ABYMEPHblX 3AAAY 
TEIIJIO- M MACCOOGMEHA 

&oTauHn - &M pemeHMn neyMepHblx sanar nepeHoca Tenna ii ivtaccbt B nopkwblx cpenax 

kiCnOJlb3yeTCR MeTOn KOHeYHblX 3JleMeHTOB. AaeTCR o6luaa +OpMyJlkipOBKa, He OrpaHHYeHHaR 

OnpeZIefleHHblM TUnOM 3,IeMeHI.a. nOKa3aH0, ‘IT0 IWkOCTb MeTOlla ~03BOnReT 3&jEKTMBHO npW 

MeHHTb CtrCTeMy ypaBHeHWii flblKOBa K ~emeHEfH3 HOBblX npaKTEi=EeCKEfX 3aRa’E. 


